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Abstract. A general interior solution of Einstein’s field equations for a tangentially 
stressed cylinder is presented. It is regular everywhere inside a cylinder of radius a and 
across the surface of the cylinder it is joined smoothly to the exterior Marder solution. The 
solution is subject to the inequality C <  1, where C i s  a parameter nearly equal to twice the 
mass per unit length of the cylinder. Under certain conditions this solution may be 
interpreted as the field inside the Raychaudhuri-Som cylindrical cluster of particles. 

1. Introduction 

In a well known paper Marder (1958) gave the following exterior solution for a 
cylindrical body: 

(dr2 + dz2), (1) ds2= r 2 c  dt2-,.2(1-C) d42-AZr2C(C-’) 

where C i s  a parameter almost equal to twice the mass per unit length of the body and A 
is connected not only with C but also, for a cylinder of finite cross section, with the 
distribution of matter in the cylinder. 

In the same paper Marder gave a particular solution for a tangentially stressed 
cylinder. It is the purpose of this paper to present a general interior solution for a 
tangentially stressed cylinder. It appears that Marder’s solution is a special case of this 
solution. Our solution is regular everywhere inside a cylinder of radius a and across the 
surface of the cylinder it is joined smoothly to the exterior Marder solution (1). The 
tangential stress is positive throughout the body. The solution is, however, subject to 
the inequality C < 1. In the particular case when C< $ it is shown that this solution may 
be interpreted as the field inside a Raychaudhuri-Som cylindrical cluster 
(Raychaudhuri and Som 1962). 

2. The field equations and their solution 

We start with the general static cylindrically symmetric line element: 

d s2=-g l l  d r 2 - g 2 2 d 4 2 - g 3 3 d ~ 2 + g 4 4 d t 2  (2) 
where r and z are the radial and axial coordinates and 4 is the angular coordinate. The 
g,, are, owing to the symmetry of the problem, functions of r only. By a simple 
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transformation of r we can make g,, = g33.  Again, as we are considering only the 
tangential stress, we shall have TI1 + T33 = 0, since both of them are assumed to be 
absent here. Hence the line element must be of Weyl canonical form (Synge 1966): 

where a and P are functions of r only. 
With the line element (3) the field equations are 

1 
()=A-$ P 

r (4) 

2u-2p h p = e  r 

where the subscript 1 denotes differentiation with respect to r,  p+ is the tangential stress 
and p the mass density. A solution of these equations is sought satisfying the following 
conditions: 

(i) /3 + 0 as r + 0 (elementary flatness); 
(ii) a, al, j3 and P I  are continuous across the boundary surface ( r  = a ) ;  

(iii) p is positive and finite. 
Equation (4) shows that if we write 

cul = c ( r ) / r  (7) 

then we must have 

where c ( r )  is a function of r. Continuity of a1 and P1 across the boundary ( r  = a )  leads to 
the interpretation of c ( r )  as the parameter almost equal to twice the mass per unit length 
of a cylinder of radius r so that c (a )  = C. 

If we integrate (7) and (8) satisfying the continuity of a and P across the boundary 
we obtain the following results: 

a = la' dr  + C In a 

Thus the line element (3) takes the form 

ds2=-A U 2c(c-1)[enp(2 la' * ( c ( r ) -  l)dr)](dr2+dz2) 
r 

(9) 

-r2a-2c[exp( - 2  F d r ) ]  d ~ $ ~ + a ~ ' [ e x p ( 2  far F d r ) ]  dt2. (11) 
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On substituting from (7)-(10) in ( 5 )  and (6) 

gTP = A-2a-2C'"-1) [exp( -2  

where c 1  = dc(r)/dr. Since the metric coefficients ( g l l  etc) as defined in (2) are positive 
and also since, according to the interpretation of c ( r ) ,  c1 is positive, (13) shows that, for 
p to be positive 

c ( r ) <  1. (14) 

c< 1. (15) 

At the boundary this leads to the condition 

Further, for p to be finite at r = 0, we must have c1 a r ,  i.e. c ( r ) a r 2  as r +O. 
From the above consideration it is clear from (12) that p+ is always positive and, for p 

to be finite at r = 0, tends to zero as r + 0. 
It is obvious that the condition of c ( r )  varying as r2  as r + O  makes the mctric 

coefficients regular everywhere. 
Now we find M,  the mass per unit length of the cylinder. The element of proper 

cross-sectional area is r ep-2a dr d$ so that the inertial mass contained in unit proper 
length is 

M = 2~ lo4 pr dr. 

On substituting for p from (13), this reduces to 

M = $  e -Pc l ( l - c ( r ) )d r=~C-aC2  I,' 
to zero order in p, irrespective of the distribution of matter in the cylinder. 

We now consider a particular solution with c ( r )  in the simplest form, namely, 

c ( r )  = kr2 (17) 

a = ~ k ( r 2 - a 2 ) + C l n  a (18) 
p = ak '(r4 - a4) + C2 In a + In A. (19) 

where k is an arbitrary constant. Making this substitution in (9) and (10) 

Since we should have p = 0 at r = 0, we have from (19) 
A = ec2/4a-c2 

This solution is the same as the one obtained by Marder for a tangentially stressed 
cylinder. 

3. Field inside a Raychaudhuri-Som cylindrical cluster of particles 

Raychaudhuri and Som (1962) discussed the case of a cylindrically symmetric cluster of 
particles randomly moving in circles perpendicular to the axis of symmetry. We shall 
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now show that under certain conditions the solution obtained in 0 2 may be interpreted 
as the field inside such a cylindrical cluster. 

Raychaudhuri and Som took a line element of the form (3) and obtained field 
equations as follows: 

1 
0 = - L f f 2  P 

r 

where p is the matter density in the cluster. Now assuming that the interior metric for 
the cluster is the same as the metric (1 1) and comparing the field equations (4)-(6) and 
(21)-(23) we find that the stress-energy tensors in both cases are identical provided 

It then follows that the solution of 0 2 may be interpreted as the field inside that 
Raychaudhuri-Som cluster whose density is given by (24). One condition has, how- 
ever, to be satisfied for this identification to be valid. For p to be positive, we must have, 
from (24) 

c ( r )<f .  (25) 

e<;. (26) 

At the boundary this leads to the condition 

Proceeding as before, the mass per unit length of the cylindrical cluster is 

,@ = 2~ Iou pr dr  = 1 2(C- C2) 

to zero order in P, irrespective of the distribution of matter in the cluster. 
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